Willard Says......

Really neat stuff you should know about hydraulic dredging.

The Discharge Pipeline—How Far Can a Pump Pump?

Sorry to say there is no simple answer. A valid analysis made with the goal of forecasting how far a dredge pump can pump must take into account the following variables:

Design variables:

- Pump efficiency.
- Available horsepower.
- Available pump speed
- Pipeline diameter.
- Static lift.
- Dredge Suitability.

Operating variables:

- Slurry density (Rate of production).
- Feed rate regulation.
- Velocity.
- Solids particle size \& distribution.
- Availability of pumpable solids.

All of these factors influence a dredge pump's maximum pipeline "range". Some of them are design variables and others are operating variables. Design variables are those that were made constants by the choices made when specifying the dredge/pipeline/process plant.

Operating variables such as density, feed rate and velocity can be converted to constants by the effective use of instruments and controls.

Uncontrollable factors-availability of pumpable solids and particle size and distribution-are unique to each deposit and may vary widely. Hopefully, the dredge is equipped to deal with these factors and maintain a satisfactory rate of production. If not, a more effective digging device may need to be employed.

Table 1 shows the length of pipeline that can be expected for various sizes of pipe under various operating conditions.

Willardsays......Pipeline— How Far Can a Pump Pump?

Table 1Projected Pipeline Length w/ Various Slurry Densities								
Pipe Size Nominal Inches	HDPE SDR	Pipe I. D. Inches	Density \% By Weight	Velocity FPS	Total Flow GPH	Product -ion TPH	HorsePower	Pipeline Length Feet
A	B	C	D	E	F	G	H	I
6	STL	6.0	20	10	881	50	99	1550
			30	11	969	90	114	1075
			40	12	1057	140	129	750
			40	17	1497	200	161	375
8P	13.5	7.3	20	12	1565	90	183	1325
			30	13	1695	155	208	950
			40	14	1825	240	237	675
			40	17	2217	300	256	450
8	STL	8.0	20	12	1879	110	220	1450
			30	13	2036	190	253	1025
			40	14	2192	290	284	750
			40	17	2662	350	300	500
10P	13.5	9.2	20	12	2485	140	290	1675
			30	13	2692	250	333	1175
			40	14	2899	390	377	825
			40	17	3521	475	406	575
10	STL	10.0	20	12	2936	165	342	1850
			30	13	3181	290	392	1300
			40	14	3425	450	445	900
			40	17	4159	550	478	625
12P	15.5	11.1	20	12	3617	210	420	2000
			30	13	3919	360	488	1425
			40	14	4220	560	547	1000
			40	17	5125	680	590	675
$\begin{gathered} 12 \\ \text { OR } \\ 14 \mathrm{P} \end{gathered}$	$\begin{gathered} \text { STL. } \\ 13.5 \end{gathered}$	12.0	20	13	4580	260	537	1900
			30	14	4933	450	611	1350
			40	15	5285	700	684	950
			40	17	5990	810	689	725
16P	13.5	13.6	20	14	6336	365	709	1850
			30	15	6788	625	771	1350
			40	17	7693	1025	891	850
16	STL	15.0	20	14	7707	450	855	2000
			30	15	8258	750	939	1500
			40	17	9359	1250	1084	925
18	STL	17.0	20	17	12020	700	1191	1575
			30	19	13435	1250	1379	1250
			40	21	14850	2000	1613	675

Column Key

Column A shows the nominal pipe size. The outside diameter (OD) of smaller size HDPE and steel pipes is larger than the actual OD. Note that $6^{\prime \prime}$ pipe is $6.63^{\prime \prime} \mathrm{OD}, 8^{\prime \prime}$ is $8.63^{\prime \prime} \mathrm{OD}, 10^{\prime \prime}$ is $10.75^{\prime \prime}$ OD and $12^{\prime \prime}$ is $12.75^{\prime \prime}$ OD. The actual OD of pipes that are $14^{\prime \prime}$ and larger is the same as the nominal size.

Column B lists "STL" for steel pipe or an SDR number if it is HDPE plastic.

Column C shows the actual inside diameter of the pipe in inches.
Column D indicates the density of the slurry described on each row. Each row listing a density of 30 percent is boldfaced to emphasize that production at this density is a worthy goal. Values shown in these rows closely represent good dredge performance.

Column E indicates the velocity of the slurry in feet per second for each row. The ideal (target) velocity that must be maintained to move slurry through a pipeline is largely dependent on the slurry density and the size and size distribution of the solids particles in the slurry.

Column F shows slurry flow in gallons per minute. It is dependent on the inside diameter of the pipe and the velocity.

Column \mathbf{G} is the rate of solids production in $2,000 \mathrm{lb}$. tons per hour. It is dependent on volume of slurry flow and the density of the slurry. Production is assumed to be uniform and uninterrupted, a condition that is rarely duplicated in actual operation.

Column H shows the horsepower required to maintain flow in the pipeline under the conditions described on each row.

Column I projects the lineal feet of pipeline through which the flow described on each row can be expected to flow when the pump is developing 220 feet of TDH.

Other factors

Static Lift. Assumed to be 40 feet for all calculations. A greater lift will decrease the length of pipe and a lower lift will enable an increase in pipe length.

Total Dynamic Head (TDH). Taken to be 220 feet because most dredge pumps can develop at least that amount of TDH. A portion of the TDH is utilized in the form of vacuum to raise solids from a depth of 40 feet to the pump inlet that is located at the surface of the water.

Particle Size \& Distribution. The solids consist of 85 percent wellgraded sand and the balance minus one-inch gravel. If the solids are finer the velocity can be slower and the pipeline length can be longer. Coarser solids may require a higher velocity, which will decrease the length of pipeline that can be served.

Pump Efficiency. The efficiency varies between 57 and 72 percent. Pump efficiency increases with velocity and density. Efficiency varies with pump make and model.

Relationships

The first and most important relationship is the one between the rate of production and the requirement that production be continuous. The production rates/pipeline lengths shown in Table 1 are possible only when the rate is continuous without "gaps" or "slugs". Most dredge operators can average the poor rate of twenty-percent solids by weight. A competent operator can achieve a thirty-percent average in a "good" deposit.

Difficulties arise when the average slurry density approaches forty-percent solids by weight. Such high densities require sophisticated controls and instruments such as Twinkle Co's CONVAC suction side stability system. The automation provided by this controller assures a continuous, regulated flow of solids into the dredge system and prevents chokeoff due to cave-ins.

Another important relationship is the effect that velocity has on pipeline length, production and horsepower. Target velocity is that velocity that is just faster than the critical velocity, which is the velocity at which solids commence to fall out of the flow and come to rest on the bottom of the pipe. Strive to determine and maintain flow at the target velocity.

It is assumed that the dredge system is adequate to the task of supplying sufficient solids and flows to obtain the listed rates of production and flow.

Total flow depends upon the pipe inside diameter and the velocity. The flows are listed to provide guidance in selection of process plant components.

ANALYSIS

The values listed in Table 1 were generated using a dredge production spreadsheet that has been refined through years of observing the performance of many dredge systems.

These theoretical projections provide some insight as to how a dredge system can be expected to perform under ideal conditions and to see how a change in one variable can affect dredge performance. As such, the projected results shown do not constitute a warranty of performance of any kind.

Contact willard@willardsays.com for more information, comment or criticism.

